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USING LEAST SQUARES COLLOCATION

ABSTRACT

This paper presents three methods of transforming
World Geodetic System 1984 (WGS84) coordinates to
Australian Geodetic Datum 1966 (AGD66)
coordinates. Traditional methods of scaling,
translating and rotating are compared with the least
squares collocation technique of parameter
estimation, filtering and interpolation revealing
some advantages of collocation.

INTRODUCTION

The U.S. Department of Defence Global Positioning
System (GPS) is widely used for surveying and
mapping applications in Australia. GPS derived
coordinates are related to the WGS84 Cartesian
coordinate system (x, y, 2)wgs whose origin is at the
Earth’s centre of mass. The Z-axis is in the direction
of the Conventional Terrestrial Pole (CTP), as defined
by the Bureau International de 'Heure (BIH) on the
basis of coordinates adopted for the BIH stations
around the world, the X-axis passes through the
intersection of the CTP’s equator and the zero
meridian plane near Greenwich as defined by the BIH
and the Y-axis is in the plane of the equator 90" east
of the X-axis.

The WGS84 Cartesian coordinate origin also serves
as the geometric centre of the WGS84 ellipsoid—
whose parameters, with one minor exception, are
those of the Geodetic Reference System 1980
(GRS80) ellipsoid (Moritz, 1980a and Decker, 1986).
The minor axis of the WGS84 ellipsoid is coincident
with the Z-axis and the X-Z and X-Y Cartesian planes
are coincident with the zero meridian and equatorial
planes of the ellipsoid respectively.

AGD66 geodetic coordinates (latitude ¢ longitude A
height ) are related to the Australian National
Spheroid (ANS) whose minor axis is parallel to the
direction of the CTP as defined by the BIH and whose
zero meridian plane is defined as being parallel to the
BIH zero meridian plane near Greenwich. The ANS is
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an integral part of the Australian Geodetic Datum
(AGD Technical Manual, 1986) and in this paper,
spheroid and ellipsoid both refer to a geometric
surface formed by an ellipse rotated about its minor
axis. AGD66 Cartesian coordinates (x, y, 2) have their
origin at the centre of the ANS; with the Z-axis in the
direction of the minor axis of the ANS, the X-axis
passing through the intersection of the ANS equator
and zero meridian plane and the Y-axis in the plane
of the ANS equator 90" east of the X-axis.

Geodetic reference ellipsoids, such as the WGS84
and ANS, are computational surfaces which
approximate the whole, or portions of, an irregular
equipotential surface known as the geoid, where the
geoid can be defined as (DMA Technical Report,
1983, p.10), “. . . that surface to which the oceans
would conform over the entire earth if free to adjust
to the combined effect of the earth’s mass attraction
and the centrifugal force of the earth’s rotation”.
Since the WGS84 ellipsoid is a global approximation
of the geoid and the ANS is only an approximation of
the geoid for the Australasian region, it is known that
the origins of the two ellipsoids do not coincide and
translations between the AGD and WGS84 origins are
approximately: 5, = +133m, 5, = +48m, 5, =-148m
(DMA Technical Report, 198’;/), where xcp = Xwes +0y
and similarly for yand z Furthermore, it is often
regarded that the axes of the two Cartesian systems
are not exactly parallel and that a scale factor exists
between vectors in both systems, It is for these
reasons that it is necessary to transform WGS84
coordinates, derived from GPS measurements, into
coordinates related to the AGD.

Three transformation models will be investigated,
(i) a three parameter model involving translations
only, (i) a seven parameter model involving three
translations, three rotations and a scale factor and (i)
least squares collocation which combines parameter .
estimation, filtering and interpolation. Parameters
for the first two models will be derived from sets of
AGD66 and WGS84 coordinates for 16 points spread
across Victoria using the traditional least squares
‘approach set out in Sections 3 and 4 respectively. The
method used in performing the transformation by
least squares collocation is detailed in Section 8.
Comparing residuals at the 16 data points from the
three transformation models indicates that the
collocation approach may offer some advantages in
determining the best estimates of transformed
coordmates

RELATIONSHIPS BETWEEN CARTESIAN
AND GEODETIC COORDINATES

Figure 1 below, shows the well known relationships
between Cartesian coordinates (x,y2) and Geodetic

coordinates (¢, A, /) of a pomt Prelated to an
lhpsmd whose semi-major axis is OE = q and semi-
minor axis is ON = b,

L suLipsom

FIGURE 1

Referring to Figure 1, the Cartesian coordinates
(xy,2) of a point P, 4,4) on an ellipsoid of semi-major
axis a and flattening f may be calculated by the
following formulae:

x = (v+h)cosdpcosh @21

y=(v+h)cospsinA (2.2)

z=(v(1-e?)+h)sind (2.3)
where

v=HP'= = radius of curvature

a
J(1=e*sin® ¢)

in the prime
vertical plane.

et =f12-1) = eccentricity squared.
b=0ON=a(l-f) = semi-minor axis

) of ellipsoid.
OH = ve*sing

The inverse computation of (¢,4,4) from (x,y,z) can be
made using the following:

cosh == (2.4)
o
2+ ve® sin
tan¢ = ————— (2.5)
r N
T eosd Y _ (2'6)
where
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A derivation of these classical formulae above, may be
found in Torge (1980, pp.47-52).

Note: In equation (2.5), functions of the latitude
appear on both sides of the equation which
requires an iterative solution for ¢, A first
approximation for the latitude may be obtained
from rtang = z. Convergence will be rapid since
h<<,

THREE PARAMETER TRANSFORMATION
MODEL

Figure 2 shows the 3-parameter transformation
model where the two parallel Cartesian coordinate
systems; XYZ with origin O; and UVW with origin O,
are linked by the vector A whose components are the
three translations 8y, 5, 8.

For n points common to both systems, the vector
equation for point P; is:

a=bj+A+yv; (31
where

aand b are position vectors, A is a vector of
translations and v is a vector of residuals.

The least squares estimate of the three parameters
in A, if all 3n coordinate pairs are considered to be of
equal precision is

g(x,—ui)
5, . Ix u
Als |2 iZ__l)(yi—v,)
5 .
>z -w)
= n

o ) (32)

where

g1y and g, are position vectors of the
centroid in both systems.

The 3-parameter transformation model assumes
that the XYZ and UVW coordinate axes are parallel
and no scale factor exists between vectors in both
systems. This model will be used as the basis for
systematic trend removal in the collocation process
discussed in later sections.

SEVEN PARAMETER TRANSFORMATION
MODEL

Figure 3 shows the 7-parameter (Bursa-Wolf)
transformation model (Krakiwsky and Thomson, 1974)
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where the UVW system is scaled, franslated and -
rotated with respect to the XYZ system, Small
rotations (o, ¢, ¥) around the (U, VW) axes
respectively, are considered positive anti-clockwise
when viewed from the positive end of the axis looking
towards the origin. The product of three consecutive
rotations around the axes can be expressed in
rotation matrices (Harvey, 1986) as:

cosk  sink Offcosg O —singll 0 0
R=RR.R, =|-sink cosx 0l 0 1 0 [0 coso sine|[~

0 0 l)sing 0 cosg [0 —sino cose

41

Since the rotations are always small, R can be
approximated by

1 x -9 100 0 x -¢
Rel-x 1 ol=[01 0+« 9 ol|=I+R (42
o -0 1 001 o -0 O

In a similar way to the 3-parameter transformation,
but including a scale factor A and the rotation matrix
R, the vector equation for P; for n points common to
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both systems is
a;=ARb; + A +v; (4.3)

Letting the scale factor A =1+ 8% and R=1+ 38R,
equation (4.3) becomes

a;=1+3M)I+ARb;+A+v; (4.4)

and since &) and 3R are small and the product 5 SR
= 0, equation (4.4) becomes

a;=0Rb; + 5Ab; + A + b; + V; (4.5)

Rearranging (4.5), each common point gives rise to an
equation of the following form:

v 0 -w v u 10 0ol [x-u

virlw 0 —u v 01 00 i=jy-v

v, -y u 0 w 00 1]k z—-w
A
3,
6)’
5, (4.6)
For the n points common to both systems, equations
(4.6) can be represented as '
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and the least squares estimate of the seven
parameters in A, if all 3n coordinate pairs are
considered to be of equal precision, is (Mikhail, 1976,
section 7.3)

A=BTBY!BTf =0 ¢ x 515,5,5]" 3 (4.8)

The 7-parameter transformation model is the
commonly accepted standard for transforming GPS
derived WGS84 coordinates to AGD66 coordinates.

THE TRANSFORMATION DATA

The transformation data were derived from a high
precision GPS network covering Victoria and New
South Wales, jointly conducted by the Land
Information Centre, Bathurst, N.S.W. and Survey &
Mapping Victoria. The part of the network covering
Victoria is shown in Figure 4 and consists of 33 -
stations connected by 146 GPS vectors. A 3-°
Dimensional unconstrained adjustment of the data
relating to these 33 stations (using program
GeoLab™) yielded WGS84 coordinates of 32 stations;
Kosciusko being held fixed at known WGS84 values.
Sixteen of these stations, indicated by a A on the
diagram, also have known AGD66 values of latitude
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(#), longitude (1) and Australian Height Datum (AHD)
heights (H = height above the geoid). Geoid-spheroid
separations () for the WGS84 ellipsoid were
computed at all stations in the network using the
Ohio State University Spherical Harmonic Gravity
Field Model OSU9IA (Rapp et al, 1991) and
transformed to ANS N-values using the three
parameter transformation model mentioned in Section
1 (DMA Technical Report, 1987). These values were
then used to calculate spheroidal heights, hgys =
Happ + Nansat the 16 common stations. A summary
of the relevant data is contained in Appendix A.

THREE PARAMETER TRANSFORMATION
RESULTS

For the 16 common stations in the GPS network, the
data given in Appendix A were converted to Cartesian
coordinates using equations 2.1 to 2.3 and the
translation vector A calculated from the position
vectors of the centroid in both systems as given by
equations (3.2).

5, -4172510.9287 [-4172643.518] [+132.590
A={5, |= 81006 ~ Bwass =| +2897331.422 |- | +2897284.264 | =| +47.158
5 -3838978.430 | | -147.234

3

—-3839125.664

Residuals v at the common stations, calculated from
equation (6.1), are listed in Table 1.

|

TABLE1
Residuals at common stations from 3-Parameter
Transformation Model

Name v(x) v(y) v(z)

Arthurs Seat -0.444 -0.231 0.128
Atkinson -0.362 -0.190 -0.146
Bambadin (PM 3) -0.520 -1.016 -0.589
Bellatine (GPS Ecc) -0575 -0.108 -0.199
Benambra (South Base) 0.377 0538 0.298
Cann 0.279 1239 0.681
Chapple -0.516 -0.403 0.085
Gredgwin Silo (Ecc A) 0.261 0125 -0.487
Holey Hill -0.486 0.222 0.279
Ida -0.145 -0.306 -0.348
Jung -0.084 -0.565 -0.646
Kosciusko (Pillar) 1157 - 0391 0.969
Matlock -0.110 0118 0.126
Samaria 0.405 0.224 0.096
Talgarno 0.690 0528 0.128
Weejort 0.073 -0.565 -0.375

The WGS84 Cartesian coordinates of the other 17
stations in the network were transformed to AGD66
Cartesian coordinates according to equation (6.2)

x X 5,
Yy =1y + Sy (62)
Z luopes L% Jwosu 5,

v, x x 5, and converted to Australian Map Grid (AMG66) east
v=lv, |~ by —a=|»| -{»| -|5,| (61)  andnorth coordinates (AGD Technical Manual, 1986).
, . , 5 These values are shown in Table 2 together with
Lo aopes L7 wosw L7 spheroidal heights of each station.

TABLE 2

AMG66 coordinates and spheroidal heights of transformed stations (3-Parameter Transformation Model)

Name Zone East(m) North(m) h(m)
Barham Reservoir 54 240373.799 6053714.397 108.790
Brumby 55 602843182 5988323.494 421,695
Bullanginya 55 369205.090 6037359153 168129
Cobbin (P) 55 642062.262 5966103.829 1273199
Eden Breakwater(P) 55 758401659 5892746.459 10.807
Euston Resetvoir 54 659873.584 6172243460 83584
Lake Littra 54 500133561 6245492.764 33.092
Lianiduck (RM3 S) 54 672296474 6097026170 96.728
Loka , 55 505922.898 6030858.722 674.729
Major (RM3 Brass) 55 382912,768 5974833.898 383445
Moorong (P) 55 527619.555 6114041572 303.793
MT Gambier (7022) 54 478411.691 5811703.065 193.824
Thiele (SA) 54 490133.895 6206448.631 52.714
Tower Hill (1862) 54 618740.431 5757483.088 103.278
Cobram (TS 72313) 55 377914.275 6024014.079 150.402
Wentworth Lock 54 583237532 6225091.830 35.237
Yelta (SSM) 54 592592.771 6223118.823 59.137

10 - March 1994

The AUSTRALAN Surveyor



SEVEN PARAMETER TRANSFORMATION
RESULTS

For the 16 common stations in the GPS network, the
data given in Appendix A were converted to Cartesian
coordinates using equations 2.1 to 2.3. The scale
factor 4, elements of the rotation matrix R and the
vector of translations A were computed using
equation 4.8,

= +7.811343 E-7 radians

omega (o) = +0.161 seconds
phi (¢) = -2.461240 E-6 radians = -0.508 seconds
kappa (x) = +2.073098 E-7 radians = +0.043 seconds
scale (A) = 0999997194 (-281ppm) = +0.043 seconds
3(x) = +129.728 m
8(y) = +57423 m
8(z) = -166.014 m

Re-ordering equation (4.5), residuals are calculated by
(7.1) and are tabulated in Table 3.

v.| Ix x x x S,
vy, =1y -y -8R| y -6M y -8,
V, z AGD 66 z WGSs 84 Z Was 4 z WGS 84 8’

(7.1)
TABLE 3 :

Residuals ot common stations from 7-Parameter
Transformation Model

Name v(x) v(y) v(z)

Arthurs Seat 0.004 -0.199 0,017
Atkinson -0.107 -0.083 -0.126
Bambadin (PM 3) -0.376 -0.076 0.372
Bellarine (GPS Ecc) -0.162 0,001 -0.222
Benambra (South Base)  -0.021 0.018 -0.114
Cann -0.024 0417 -0.043
Chapple 0.241 -0.068 0.201
Gredgwin Silo (Ecc A) -0.019 0510 -0.009
Holey Hilt -0.328 -0167 . -0169
Ida -0.226 -0178 -0.208
Jung } 0.049 0.069 -0.027
Kosciusko (Pillar) 0476 -0.250 0.525
Matlock -0114 -0.091 -0104
Samaria 0.142 0.059 -0.009
Talgarno 0.006 0.151 -0.052
Weejort ‘ 0.459 -0.114 -0.033

The WGS84 Cartesian coordinates of the other 17
stations in the network were transformed to AGD66
Cartesian coordinates according to equation (7.2)

x - [x 3,
y =AR| y + 8, (7.2)
z AGD 66 z WGS 84 8'

and converted to. AMG66 east and north coordinates.
These coordinates together with spheroidal heights of
each station are shown in Table 4.

THE LEAST SQUARES COLLOCATION
MODEL

Mikhail (1976, p.394) describes collocation as “a
general least squares technique combining classical
adjustment with interpolation and filtering. ..,
where interpolation is the estimation of quantities at
locations where no observational data are given and
filtering is the estimation of these quantities taking
into account the random measuring errors assumed to
have occurred at the data points. Mikhail (1976) and
Krakiwsky (1975) both demonstrate that least squares
parameter estimation (adjustment) and least squares
interpolation and filtering are special cases of
collocation and Moritz (1980b p.132) provides ample -
mathematical proof that, as is the case with
traditional least squares, “. . . collocation is optimal in
the sense that it gives the most accurate results that
are obtainable on the basis of the available data”.

To develop the collocation equations, consider
equation (4.7) where the transformation model for n
observations of u parameters can be represented as

Vind) + BinwAwy) = finy) (47)

and suppose that the residuals v are decomposed into
a correlated signal component s and a random noise
component n. The noise in the model is simply the
random measuring errors and the signal can be
described as that component of the model which
reflects the inability of the u selected parameters A
to accurately describe the physical relationships.
Furthermore, the signal component can be subdivided
into signals at the n observation points t and signals
at the m computation points u. These three random
vectors can be combined as

S T H @

and so equation (4.7) becomes

4

Wity
[o(m.m) Low I(n.n)} ton |+ BunBan =T (8.2)

or | B
AV+BA=f ' (8.3)

Assuming that no correlation exists between signal
and noise, the a-priori variance-covariance matrix
associated with the random quantities in equation
83)is

Cuu Cul

Je, o C..
C= and C,=

[ 0 CM] [CII

C, :
hence C=|CI, C,
Ca

0

OJ
0 o C,

(8.4)
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TABLE 4

AMG66 coordinates and spheroidal heights of transformed stations {7-Parameter Transformation Model)

Name Zone East(m) North(m) h(m)
Barham Reservoir 54 240373.766 6053713718 108,592
Brumby 55 602842.267 5988323.631 421214
Bullanginya 55 369204.732 6037358.750 167.826
Cobbin (P) 55 642061.277 5966104.098 1272.707
Eden Breakwater(P) 55 758400480 5802747118 10.297
Euston Reservoir 54 659873.637 6172242226 83.324
Lake Littra 54 500133.918 6245491,030 32.871
Lianiduck (RM3 S) 54 672296630 6097025,168 96579
Loka 55 505922175 6030858.581 674.287
Major (RM3 Brass) 55 382912.484 5974833.694 383.231
Moorong (P) 55 527618.631 6114041.239 303187
MT Gambier (7022) 54 478412.920 5811702.516 194317
Thiele (SA) 54 490134.354 6206446.984 52.568
Tower Hill (1862) 54 618741.355 5757482.951 103.712
Cobram (TS 72313) 55 377913.916 6024013.729 150.112
Wentworth Lock 54 583237.698 6225090.310 34.967
Yelta (SSM) 54 592592915 6223117.325 58.861
where solution. The underlying difference between the two

Cyuu s the (m;m) variance-covariance matrix for the
signals at the computation points,

C, is the (n,n) variance-covariance matrix for the
signials at the observation points,

Cy is the (m,n) covariance matrix between the signals
at the computation and observation points, and

C,m’ is the (n,n) variance-covariance matrix of the noise.
Applying the least squares principle to equation
(8.3) in the manner of Mikhail (1976, pp.419-420)

leads to the best estimates for the parameters, signals
and noise as

A = (BTDBYY(BTD) (85)

U(m1) = CyeD(f - BA) (86)

t(ni) = C4DU(f - BA) 8.7

Ny = CnnD-l(f -BA) (8.8)
where o

Dinn) = (Cit+ Cpn) (89)

The mathematical model described above
(equations 8.1 to 8.4) and its solution (equations 85 to
8.8) is known as Collocation with Parameters and
allows the simultaneous estimation of: (i) the vector of
parameters A; (i) the vector of signals u at the
computation points, (known as interpolation); (iii) the
vector of signals t at the observation points, (known
as filtering); as well as (iv) the vector of random noise
n at the observation points. Those familiar with the
traditional least squares approach will notice the
strong resemblance to the collocation model and its

approaches is the incorporation of the signal term s
and the components of its variance-covariance matrix
C; in the solution equations. In fact, it is this matrix
C,, which represents the central point in collocation
and allows quantities, which are normally linked by
mathematical relationships, to be described in a
statistical manner, ie. by the use of variance-
covariance matrices.

In describing an application of collocation Cross
(1992, p.142) uses the example of predicting the
unknown height of a point surrounded by a number of
other points of known height. The location of all
points are known and it is assumed that a distance
dependent function is known which is capable of
computing the covariance of the heights of any two
points in the region, This covariance function enables
all the elements of a height variance-covariance
matrix to be computed which describes the variation
of height in the region in a statistical manner. In flat
areas, the heights of neighbouring points would be
highly correlated (large covariances), but in highly
undulating areas, points would be weakly correlated
(small covariances). Solving the collocation equations,
with the appropriate variance-covariance matrices,
allows unknown heights of points within the region to
be interpolated (or predicted). This approach
contrasts with the usual method of fitting a surface to
the known points and using the parameters of that
surface to compute heights at other points.
Determining the appropriate covariance function to
compute the elements of Cgis the central issue in
collocation.
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THE COLLOCATION MODEL APPLIED TO
3-D CARTESIAN COORDINATE
TRANSFORMATIONS

In the collocation model described above, the
selection of the u parameters in A depends on
whether it is assumed the coordinate systems are
related by translations only, or by scale, rotations and
translations. In the former, A =[5, 5, 8,]” and u =3,
whilst in the latter A = [o ¢ x 5 8, 5, y8 7 and u=T7.In
the case of three parameters the coeff1c1ent matrix B;
for each of the n points common to both systems will
be equal to the identity matrix I and in the case of
seven parameters B; will take the form given in

equation (4.6). In both cases, the vector f will contain
- numeric terms which are coordinate differences

(% % 2)acpes = (% 4 Dwesss
In this paper, for simplicity, the collocation model
will assume A =[5, 8,8, and u=3.

THE COVARIANCE FUNCTION FOR
‘THE MODEL

The covariance function, necessary for computing the
elements of the signal variance-covariance matrices
Cy and C,; must be determined empirically from the
observational data and as a prerequisite, the
systematic component of the data, modelled by BA,
must be removed. This is known as frend removal and
BA is referred to as the trend surface. Inspection of
equations (8.6 to 8.8) shows that u, t and n are
determined from the observational data after trend
removal, expressed in the equations as (f - BA). Since
a collocation model with A = [8,38, 8,1 and u =3 is
assumed, then the residuals arlsmg from the 3-
parameter transformation (given in Table 1) are in fact
the observational data with the trend removed and are
represented by v in equation (8.1). It is commonplace
to assume that any correlation between these
“observed” quantities I =[4, b, & ... L,J7 is distance
dependent and variances and covariances are
calculated (Mikhail, 1976, p 405) as

Variance: C(0)== Zzz (10.0)
p-l

Covariance; C,(d,,)— ZII (10.2)
k i<j

Equation (10.1) shows that the variance is computed
by summing the squares of all data values /, and
dividing by the number of data points n. Equation
(10.2) shows that a covariance may be computed from
the ny data pairs (or products) falling within a
particular distance class interval dy. The sixteen (16)
data points common to both systems give rise to
(n2 - n)/2 =120 data products which can be grouped
into spatial distance classes dj and a covariance

calculated for each distance class. Table 5 shows
covariances (cm2) in x,yz directions for particular
distance classes and the number of data products
used to calculate each covariance.

TABLE 5 -

Spatial Distance Class Covariances -
Dist Class X-COV y-cov = z-cov  prods
{km) (cm squared) .

0-25 0.00 0.00 0.00 0
25-50 231787 221.19 1717 2
50-75 1605.57 43802  -186.79 1
75-100 124342 801.60 966.15 4
100-125 2582.68 1569.98 707.76 5
125-150 714.88 157830  1236.20 16
150-175 -45.84 264.70 17494 8
175-200 ~1062.90 536.03 556.58 6
200-225 1190.43 360.77 691.31 .6
225-250 -570.16 1423.96 67339 = 12
250-275 9.06 76.55 251.88 6
275-300 -109210 -49417  -408.29 9
300-325 -1082.27 -68721  -627.39 6
325-350 -1032.65 -38.37 -257.17 4

Varlances calculated from the data are 2= 934120
cm?, oy 275808 cm2 and o2 = 1849.36 cm2. Figures
5, 6 and 7 show graphs of covariance versus spatial
dlstance (solid line) where the covariance is plotted at
the mid-point of the particular data class.
Superimposed over these graphs is a dotted line
representing a distance dependent covariance
function of a Gaussian form represented by the
equation

C(d) = ce-(a?d?) - : (10.3)
where ’ '

C(d) is the covariance between two pomts
distance d apart,

¢ isaconstant equal to the variance and
a isaconstant.

The constants ¢ and a for these three covariance
functions were derived from a weighted least squares
“best fit” solution of the positive covariances shown in
Table 5, where weights were assigned according to.
the number of data pairs used to calculate the
covariance. o

The three covariance functions shown as dotted
lines in Flgures 5,6 and 7 are

C.(d)=2438¢ (':2)2 - o (104
C,(d)=1792 e—(‘.:—‘") . (105)
C,(d)=1047 e_(;%) , l | (10.6)
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These covariance functions were used to compute the
elements of matrices Cy and C,;.

The noise n in the model is assumed to be random
and furthermore, it is assumed that no correlation
exists between signals s and noise n. Mikhail (1976,
pp.395-399) shows that the variances of the noise can
be calculated from the relationship ‘

C{0) = C40) + C,{0) (10.7)
where
C;Cs C,  are covariances of observations, signals
and noise respectively,
c) is the covariance between two points

distance d = 0 apart; or in other words,
the variance,

Using this relationship, the elements of the
diagonal noise variance matrix C,, were calculated
from the observations and the covariance functions as

o? =[2341-2438| = 97 cm? G, =+0.098 m
o), =2758-1792 = 966 cm® c,=10.311m
o2 =1849 - 1047 = 802 e’ o, =10.283m

COLLOCATION RESULTS

For the 16 common stations in the GPS network the
parameters A were computed using equation (8.5) as

S, +132.622
A= 6,, =| +47.163 | metres
5,1 [-147.205

The small differences between these values and those
obtained from the 3-parameter model, which assumes
“measurements” of equal precision, are due to the fact
that the variance-covariance matrix D is included in
the collocation solution, The matrix D reflects the
varying precision between the “measurements” in the
collocation model,

The signals u and t and the noise n were computed
using equations (8.6), (8.7) and (8.8) and are given in
Tables 6, 7 and 8. ‘

TABLE 6

Signals v at the 17 computation points

Name u(x) ufy) u(z)
Barham Reservoir 0.198 0.064 -0.362
Brumby 1.082 0.432 0443
Bullanginya 0.206 0.169 -0.134
Cobbin (P) 1.082 0.495 0.499
Eden Breakwater(P) 0.315 0572 0.459
Euston Reservoir - 0.043 -0.042 -0.289
Lake Littra -0.016 -0121- -0159
Lianiduck (RM3 S) 0.120 -0.097 -0411

Loka 058 0319 0.209
Major (RM3 Brass) 0317 0.140 -0.093
Moorong (P) 0.267 0.208 0174
MT Gambier (7022) -0.054 -0.359 -0.256
Thiele (SA) -0.045 -0.197 -0.207
Tower Hill (1862) -0.094 -0.379 . -0.192°
Cobram (TS 72313) 0.251 - 0173 . -0114
Wentworth Lock -0.012 -0.099 -0.207
Yelta (SSM) -0.009 -0.092 -0.211
TABLE 7

Signals t at the 16 observation (common) points

Name t(x) t(y) t(z)
Arthurs Seat -0.499 -0171 -0.030
Atkinson -0.424 -0221 ©  -0.155
Bambadin (PM 3) -0.533 -0.678 -0.448
Bellarine (GPS Ecc) -0.549 -0.231 -0.096
Benambra (South Base) 0.376 0540 0.404
Cann 0.242 0.777 0.482
Chapple -0.531 -0.312 -0.083
Gredgwin Silo (Ecc A) 0.212 -0.077 -0.449
Holey Hill -0.502 0.254 0.231
Ida -0147 -0.118 -0.272
Jung -0.107 -0.517 -0.516
Kosciusko (Pillar) 1.066 0.496 0.474
Matlock -0.131 0122 0.093
Samaria 0.337 0.162 0.023
Talgarno 0.658 0.348 0.235
Weejort 0.022 -0.446 -0.350
TABLE 8

Noise n at the 16 observation {common) points

Name n(x) n(y) n(z)
Arthurs Seat 0.023 -0.065 0.130
Atkinson 0.030 0.027 -0.019
Bambadin (PM 3) -0.019 -0.342 -0.169
Bellarine (GPS Ecc) -0.058 0119 -0132
Benambra (South Base)  -0.031 -0.006 -0.135
Cann 0.005 0458 ., 0171
Chapple -0.017 -0.096 0.139
Gredgwin Silo (Ecc A) 0.017 0.198 -0.067
Holey Hill -0.016 -0.037 0.020
Ida -0.030 -0.192 -0.104
Jung -0.009 -0.053 -0.159
Kosciusko (Pillar) 0.060 -0.110 0.466
Matlock ' -0.011 -0.009 0.005
Samaria 0.037 0.057 0.045
Talgarno 0.000 0176 =0.136

Weejort 0.019 -0124 . -0.053

The WGS84 Cartesian coordinates of the other 17

stations in the network were transformed to AGD66

Cartesian coordinates according to equation (11.1)

x x u | |5, : o
y =y +u, |+ 8y (11'1)
z AGD;SG z WGS 84 u‘ 5‘
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and converted to AMG66 east and north coordinates.
These values are shown in Table 9 together with the
spheroidal heights of each station.

TABLE 9

AMG66 coordinates and spheroidal heights of transformed stations (Collocation Transformation Model)

Name Zone East(m) - North(m) h{m)
Barham Reservoir 54 240373.618 6053714.034 108.865
Brumby 55 602842225 5988323.462 420.840
Bullanginya 55 369204.813 6037359.004 168.111
Cobbin (P) 55 642061.256 5966103.858 1272330
Eden Breakwater(P) 55 758400999 5892746.861 10.503
Euston Reservoir 54 659873.564 6172243198 83.664
Lake Littra 54 500133.641 6245492607 33.094
Lianiduck (RM3 S) 54 672296.449 6097025.754 96.805
Loka 55 505922.291 6030858.716 674.312
Major (RM3 Brass) 55 382912456 5974833718 383.317
Moorong (P) 55 527619.217 6114041660 303,564
MT Gambier (7022) 54 478411.981 5811702.257 193.800
Thiele (SA) 54 490134.054 6206448422 52.722
Tower Hill (1862) 54 618740.763 5757482.845 103.238
Cobram (TS 72313) 55 377913.971 6024013.927 150,344
Wentworth Lock 54 583237592 6225091638 35275
Yelta (SSM) 54 592592.826 6223118.632 59.179

COMPARISON OF TRANSFORMATION
RESULTS

Table 10 shows differences between published
AMG66 and AHD values and the three transformation
models; 3-parameter, 7-parameter and collocation.

‘The reader may draw conclusions as to the relative
worth of the three transformation models based on
the differences in Table 10 (published-transformed)
but a statistical analysis of the residuals v for the 3-
and 7-parameter models and the noise n in the
collocation model may be useful in quantifying the
precision of the three transformation methods.

From Tables 1, 3 and 8, the standard deviations of
the residuals v and the noise n are

c,] [+0.50 $0.24 +0.03
G, |=|10.54 ,| H0.21 ) ,| £0.18 melres
o,] |20.44) ,nu L$020] . |2017]

These standard deviations indicate that the
collocation model is of comparable precision to the 7-
parameter model and far better than the 3-parameter
model.

The means and standard deviations of the
differences in Table 10 are tabulated below

Etog| [-0.62+0.40 -0.21+0.34 —-0.25£0.281"
Nto, |=]|-02310.53 ,| 0.04£0.20 101710421  metres
0.16£0.26 | ... o.;sio.zl e | 0445026 1

These values indicate that collocation is able to
predict coordinates and heights to accuracies
comparable with the 7-parameter transformation and
generally better than the 3-parameter model.

DISCUSSION

The theoretical foundations of collocation are
described in texts such as Moritz (1980b), Mikhail
(1976) and Krakiwsky (1975) but little mention is
made of applications to coordinate transformations.
Moritz (1972, pp.51-66) and Cross (1992, pp.150-151)
describe how collocation can be applied to coordinate
transformations and Ruffhead (1987) uses the
technique to transform the grid coordinates of 15
Ordnance Survey Stations in England and Wales from
the OSGB36 system to the OSGB70(SN) system.
Ruffhead describes his results as remarkable when
compared to other two-dimensional transformation
models but Vincenty (1987), who re-worked Mr
Ruffhead’s data, comments that collocation is
complicated and that a 5th. order polynomial
transformation gives better results. Vincenty, in his
final comments on the plane transformations he
investigated, notes that no consideration had been
given to internal distortions existing within the data.
This is a crucial point and it should be emphasised
that collocation does provide a means by which
distortions can be modelled statistically, provided that
sufficient data is available to determine the necessary
covariance functions. Determining the correct
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TABLE 10

Differences between published AMG66 and AHD values and transformation values

North(m)

H(ATD)

Name Zone East(m)

Brumby 55 602842432 5988323,738 ~ 41211
(3-parameter) -0.750 - 0244 - 0.07
(7-parameter) 0.165 0107 055
(collocation) 0.207 0.276 - 092

Bullanginya 55 369204.524 6037359.064 162,21

~0.566 -0.089 021

-0.208 0.314 - 051

-0.289 0.060 023

Cobbin (P) 55 642061.369 5966104178 1262.39
-0.893 0.349 =021

0.092 0.080 - 028

-0.464 0.068 012

Eden Breakwater(P) 55 758400.535 5892746.929 5.20
-1124 0470 =019

0.055 -0.189 032

-0.464 0.068 - 012

Lianiduck (RM3 S) 54 672295.777 6097025.081 - 91.86
-0.697 -1.089 057

-0.853 -0.087 072

-0.672 -0.673 050

Loka 55 505921.984 6030858.580 667.86
-0.914 -0.142 ?

-0.191 -0.001- . SRS

-0.307 --0.316 S ?

Major (RM3 Brass) 55 382912.181 5974833.706 376.45
-0.587 -0.192 0.08

-0.303 0.012 . 0.29

. -0.275 -0.012 020

Moorong (P) 55 527618.889 6114041.055 - 29772
-0.666 ~0517 © 042

0.258 -0184 1.02

-0.328 -0.605 0.65

Tower Hill (1862) 54 618740.869 5757482.756 955
0438 - -0.332 0.3

-0.486 -0195 =01

0.106 -0.089: © 04

Cobram (TS 72313) 55 377913.656- 6024014.011 144.34
-0.619 -0.068 0.24

-0.260 0.282 0.53

-0.315 0.084 0.30

Yelta (SSM) 54 595592.332 6223117652 17
(3-parameter) -0.439 -1171 ?
(7-parameter) -0.583 0327 ?
{collocation) -0.494 ?

--0.980

covariance functions is the heart of collocation and as
Vincenty notes: “Mathematics alone cannot perform
miracles”.

The AGD66 coordinate data used in this exercise is
known to be distorted and various analyses by Survey
& Mapping Victoria have shown that these distortions
vary in magnitude and direction across the State. The

covariance functions shown in Figures 5, 6 and 7,
attempt to model these distortions but it is obvious.
from the distribution of the common points (Figure 4)
and the very small number of products involved in the
empirical covariances (Table 5) that the form of these
functions are open to question, Nevertheless, there is
some justification for believing that distance
dependent correlation exists within the data and this
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is verified by the general reduction in the magnitude
of the residuals at the common points, particularly in
the x-direction, when compared with the 7-parameter
transformation.

It should also be noted that covariance functions
tend to lose their meaning for distances exceeding
certain limits and a variable known as the correlation
length (¢) is used as a measure, where & is that
distance for which C(¢) = 0.5 ¢ in equation (10.3). For
the three covariance functions used (given in
equations 10.4, 10.5 and 10.6) the correlation lengths
are & =110 km, 162 km and 214 km respectively. It is
generally accepted in the literature that covariances
may be ignored at distances greater than 1.5¢, but in
this investigation, covariances have been evaluated for
all distances and it may be that results would change
if distance limits were imposed on the covariance
functions. This aspect will be the subject of future
investigations in coordinate transformations,

Once suitable covariance functions have been
developed for a particular region, transformation
between coordinate datums is a relatively simple

process involving the formation of the matrix C,; only.

Equation (8.6) is used to solve for the signals u at the
desired computation points, with the matrices D, B, A
and f known constants for the particular region and
transformed coordinates obtained by equation (11.1).
This process would be entirely transparent to a
computer user and in a similar way to the 3- and 7-
parameter transformations, no further computation of
transformation “parameters” is required.

In any least squares solution, a-posteriori precision
estimation of parameters and residuals is possible and
in collocation, estimates of precision for the
parameters A, the signals u and t and the noise n can
be made (Mikhail, 1976, pp.421-423). In this paper, no
precision estimations have been made and it may be
that an analysis of this type could provide valuable
information when choosing one transformation
method in preference to others.
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APPENDIX A
Table of data for GPS network shown in Figure 4.

Notes: 1. For the 16 common stations, the first values for each station are published AGD66 geodetic coordinates and the
second values are WGS84 coordinates from an unconstrained GeoLab™ adjustment (Kosciusko held fixed). For -
the AGD66 values: spheroidal height &= H+ N where Hare AHD levelled heights and N are geoid-spheroid
separation values computed using OSU91A geoid model and transformed to the ANS (see Sec. 5).

2. For the 17 other stations in the network, the values are WGS84 geodetic coordinates from the GeoLab™
adjustment and geoid-spheroid separation values related to the ANS computed using the OSU91A geoid model
(see Sec. 5).

3. Spheroids: ANS a=63781600m f=1/29825
WGS84 a=6378137.0m  f=1/298257223563

COMMON STATIONS
H(m) N(m)
Name Lat.(DMS) Long (DMS) h(m) (AHD) . (ANS)
ARTHURS SEAT -38 21 185350 144 56 57.8281 326.798 318.628 817.
-38 21 13.14053 144 57 253573 321.98791 o
ATKINSON -37 45 32.2061 144 40 53.6989 149.021 140.361 8,66
-37 45 26.80477 144 40 5838740 145.38617 :
BAMBADIN (PM 3) -36 7 94677 140 58 36.7367 161.005 154.455 6.55
-36 7 4.16871 140 58 4149517 156.07901 .
BELLARINE (GPS Ecc) -38 9 10.2192 144 36. 389519 144.050 135.820 8.23; ,
-38 9 4.83008 144 36 4366724 138.95233 :
BENAMBRA (South Base) -37 0 424517 147 39 483021 781107 770.857 1025 ;
, -37 0 3693211 147 39 5280853 784.78046 ‘ ;
CANN -37 38 541332 148 58 397215 536494 - 529884 . 661 '
-37 38 4858960 148 58 4420631 540.16496_ , ) :
CHAPPLE -38 39 499180 143 27 10664 557.002 548,252 8.75
-38 39 4458801 143 27 587277 54894666 ‘
GREDGWIN SILO (Ecc A) -35 58 221290 143 37 6.6990 152,370 146.050 - 6.32
-35 58 16.72815 143 37 1136347 152.25840
HOLEY HILL -38 14 0.0832 146 56 194618 224,935 217875. .. 7106
-38 13 54.61751 146 56 2405754 22342837 g
IDA -36 52 50.0031 144 42 221910 458166  450.366 7.80 'i
-36 52 4457793 144 42 2682486 457.20060 - |
JUNG -36 36 50.4342 142 21 246300 - 159504 151.884 7.62 j
-36 36 45.08562 142 21 2937108 15547370 7 .
KOSCIUSKO (Pillar) -36 27 26.5620 148. 15 441212 2239550 2229480 10.07 -
-36 27 21.01840 148 15 - 4856910 2246.799 -
MATLOCK -37 34 351824 146 11 21.0457 1382.952 1372.482 10._47t i
-37 34 2972636 146 11 2564978 138241449 ‘ |
SAMARIA -36 51 20.9080 146 3 399282 960,625 952.425 820 §
-36 51 1543894 146 3 4451169 962.27992 é
TALGARNO 36 5 66509 147 5 434265 652012 644942  7.07
-36 5 113281 147 5 4792021 65766084 a , : E
WEEJORT -37 33 6.7333 143 5 05094 377698 368.608 9,09 : ;
’ -37 33 137561 143 5 527304 37241748
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OTHER STATIONS

Lat.(DMS) Long.(DMS) h(m) N(m)
Name (WGS84) (WGS84) (WGS84) (ANS)
BARHAM RESERVOIR -35 37 2880639 144 8 419019 110.70807 6.02
BRUMBY -36 14 34.24287 148 8 4496182 42819672 9,65
BULLANGINYA -35 47 5111853 145 33 1353147 171.85280 6.13
COBBIN (P) -36 26 17.20504 148 35 1043841 1279.79583 1060 .
EDEN BREAK WATER(P) =37 4 2741972 149 54 2848513 1749208 542
EUSTON RESERVOIR -34 34 392079 142 44 3951179 86.21749 459
LAKE LITTRA -33 55 4592358 141 0 987804 34.59868 397
LIANIDUCK (RM3 S) -35 15 1243957 142 53 4275233 97.66481 544
LOKA -35 51 5336338 147 4 063218 680.66866
MAJOR (RM3 BRASS) -36 21 461979 145 41 4613340 385.73656 7.07
MOORONG (P) -35 6 5192944 147 18 1555993 31233860 6.49
MT GAMBIER (7022) -37 50 24.96113 140 45 21.62636 183.80783 6.93
THIELE (SA) -34 16 5342635 140 53 38.80679 53.02736 398
TOWER HILL (1862) -38 19 16.71546 142 21 3503472 9452845 812
COBRAM (TS 72313) -35 55 818846 145 38 53.07056 153.92041 6.30
WENTWORTH LOCK -34 - 6 3632961 141 54 1368485 37.78353 383
YELTA (SSM) =34 7 3754072 142 0 1955781 61.80925 385
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